Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model

Article history: Received 27 December 2013 Received in revised form 4 March 2014 Accepted 7 March 2014 Available online 18 March 2014

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Two-way coupling of an ENSO model to the global climate model CLIMBER-3a

We present a model study that investigates to what extent it is possible to introduce ENSO variability to an Earth system Model of Intermediate Complexity (EMIC). The Zebiak–Cane ENSO model is dynamically coupled to the EMIC CLIMBER-3a, which by itself exhibits no interannual or multidecadal variability. ENSO variability is introduced to CLIMBER-3a by adding ENSO-related sea surface temperature...

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2014

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2014.03.009